top of page

Bibliography

Brettell, R.C., Schotsmans, E.M.J., Walton Rogers, P., Reifarth, N., Redfern, R.C., Stern, B.,      Heron, C.P., 2015. ‘Choicest unguents’: molecular evidence for the use of resinous plant exudates in late Roman mortuary rites in Britain. Journal of Archaeological. Science 53, 639-648.

Cramp, L. J. E., Evershed, R. P., 2015. Reading the residues: the use of chromatographic and mass spectrometric techniques for reconstructing the role of kitchen and other domestic vessels in Roman antiquity. In: Spartaro, M., Viling, A., (Eds.). Ceramic Cuisine and Culture: The Archaeology and Science of Kitchen Pottery in the Ancient Mediterranean World, Oxbow, Oxford, pp. 125-140.

Eglington, G., Logan, G., 1991. Molecular preservation. Philosophical Transactions of the Royal Society of London B 333, 315-328.

Eusebio, M. S., Laffey, A. S., Duffy, L. G., Krigbaum, J., 2017. What metabolomics can do for archaeological organic residue analysis? Presented at the 2017 Southeast Center for Integrated Metabolomics (SECIM) Symposium, May 2-3, 2017, Orlando, FL, https://www.academia.edu/ 32850044.

Evershed, R. P., 2007. Structure of Lipids, presented at the 1st International School on the
Characterization of Organic Residues in Archaeological Materials (ISCORAM), June 24-29,
Grosseto, Italy.

Evershed, R. P., 2008. Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry 50, 895-924.

Evershed, R. P., Mottram, H. R., Dudd, S. N., Charters, S., Stott, A. W., Lawrence, G. J., 1997. New criteria for the identification of animal fats preserved in archaeological pottery. Naturwissenschaften 84, 402–406.

Evershed, R. P., Dudd, S. N.,Copley, M. S., Mutherjee, A., 2002. Identification of animal fats via compound specific δ13C values of individual fatty acids: assessments of results for reference fats and lipid extracts of archaeological pottery vessels. Documenta Praehistorica 29, 73-96.

Grice, K., de Mesmay, R., Glucina, A., Wang, S. 2008. An improved and rapid 5A molecular sieve method for gas chromatography isotope ratio mass spectrometry of n-alkanes (C8–C30+). Organic Geochemistry 39, 284-288.

Harper, C. S., Macdonald, F. V., Braun, K. L., 2017. Lipid residue analysis of archaeological pottery: An introductory laboratory experiment in archaeological chemistry. Journal of Chemical Education 94, 1309-1313.

Koelmel, J. 2020. Introduction to Lipidomics with a focus on Informatics Tools. Presented at the SECIM Metabolomics Winter School, University of Florida, Gainesville, Florida, January 29, 2020. 

Lanehart, R. E., Tykot, R. H., Underhill, A. P., Wang, F., Luan, F., Kumar M. V., V., Keramisanou, D., Gelis, I., 2018a. Identifying pig residue in a ding pottery sherd: A gas chromatography-mass spectrometry, gas chromatography-isotope ratio mass spectrometry, nuclear magnetic resonance, and LC-MS-MS metabolomics analysis, presented at the 42nd International Symposium on Archaeometry, Merida, Yucatan, Mexico, May 20-26, 2018.

Lanehart, R. E., Tykot, R. H., Underhill, A. P., Wang, F., Luan, F., 2018b. Analytical methods used to identify lipid residues from ancient foodstuffs, presented at the 1st International Interdisciplinary Workshop on Archaeological Science and Ancient Food, Tampa, Florida, October 26, 2018.

Llorens-Fons, M., Julián, E., Luquin, M., Perez-Trujillos, M., 2018. Molecule confirmation and structure characterization of pentatriacontatrienyl mycolate in Mycobacterium smegmatis. Chemistry and Physics of Lipids 212, 138-143.

Luong, S., Hayes, E., Flannery, E., Sutikna, T., Tochen, M. W., Saptomo, E. W., Jatmiko, Roberts, R. G., 2017. Development and application of a comprehensive analytical workflow for the quantification of non-volatile low molecular weight lipids on archaeological stone tools. Analytical Methods 9, 4349-4362.

Monnier, G., Frahm, E., Luo, B., Missal, K., 2017. Developing FTIR microspectroscopy for analysis of plant residues on stone tools. Journal of Archaeological Science, 78, 158-178.

Oras, E., Vahurz, S., Isaksson, S., Kaljurand, I., Leito, I., 2017a. MALDI-FT-ICR-MS for archaeological lipid residue analysis. Journal of Mass Spectrometry 52, 689-700.

Plet, C., Grice, K., Pagès, Ruebsam, W., Coolen, M. J. L., Schwark, L. 2016. Microbially-mediated fossil-bearing carbonate concretions and their significance for palaeoenvironmental reconstructions: A multi-proxy organic and inorganic geochemical appraisal. Chemical Geology 426, 95-108.

Roffet-Salque, M. Dunne, J., Altoft, J. T., Cassanova, E., Cramp, L. J. E., Smyth, J., Whelton, H. L., Evershed, R. P., 2017. From the inside out: Upscaling organic residue analyses of archaeological ceramics. Journal of Archaeological Science: Reports, http://dx.doi.org/ 10.1016/j.jasrep.2016.04.005.

Tanasi, D., Greco, E., Di Tullio, V., Capitani, D., Gullì, D., Ciliberto, E., 2017. 1H-1H NMR 2D-TOCSY, ATR FT-IR and SEM-EDX for the identification of organic residues on Sicilian prehistoric pottery. Microchemical Journal 135, 140-147.

Tanasi, D., Greco, E., Ebna-Noor, R., Feola, S., Kumar, V., Crispino, A., Gelis, I., 2018. 1H NMR, 1H–1H 2D TOCSY and GC-MS analyses for the identification of olive oil in Early Bronze Age pottery from Castelluccio (Noto, Italy). Analytical Methods 10, 2756-2763.

Ulmer, C. Z., Yost, R. A., Chen, J., Mathews, C. E., Garrett, T. J., 2015. Liquid chromatography-mass spectrometry metabolic and lipidomic sample preparation workflow for suspension-cultured mammalian cells using Jurkat T lymphocyte cells. Journal of Proteomics and Bioinformatics 8, 126-132.

The Science & 

Mathematics University

© 2023 by Scientist Personal. Proudly created with Wix.com

  • Facebook Clean Grey
  • Twitter Clean Grey
  • LinkedIn Clean Grey
bottom of page